数学の問題作ってみた

■ このスレッドは過去ログ倉庫に格納されています
1名無しなのに合格2019/10/21(月) 18:19:55.12ID:tLmE0FUP
a,b,cを実数とする。
関数f(x)=ax^2+bx+cを考える。
任意の正の実数xについてf(x)の逆関数が一意に定まるa,b,cの条件を求めよ。
ただしa=0かつb=0の場合は考えない。

2名無しなのに合格2019/10/21(月) 18:20:49.74ID:tLmE0FUP
あんまりすごい問題じゃないけど暇なら解いてみてや

3名無しなのに合格2019/10/21(月) 18:21:32.25ID:TpUlnoXx
b^2-4ac=0のときじゃないの

4名無しなのに合格2019/10/21(月) 18:23:25.40ID:tLmE0FUP
>>3
不正解

5名無しなのに合格2019/10/21(月) 18:26:08.87ID:twTncZA+
宿題は自分でやろう

6名無しなのに合格2019/10/21(月) 18:28:59.41ID:tLmE0FUP
>>5
自作です
だから問題として成り立つのかちょっと不安

7名無しなのに合格2019/10/21(月) 18:50:36.68ID:tLmE0FUP
さっきの問題はあんまり答えがおもしろくないから解けた人はこっちも解いてみてまぁただ三次関数にしただけだけど

a,b,c,dを実数とする。
関数f(x)=ax^3+bx^2+cx+dを考える。
任意の正の実数xについてf(x)の逆関数が一意に定まるa,b,c,dの条件を求めよ。
ただしa=b=c=0の場合は考えない。

8名無しなのに合格2019/10/21(月) 19:03:38.94ID:tLmE0FUP
寂しいからだれか解いてくれよ…

9名無しなのに合格2019/10/21(月) 19:03:46.04ID:tLmE0FUP
あげ

10名無しなのに合格2019/10/21(月) 19:04:01.24ID:hZfgBPYG
単調増加か単調減少にすればいい?

11名無しなのに合格2019/10/21(月) 19:04:20.54ID:tLmE0FUP
>>10
あ、終わっちゃった

12名無しなのに合格2019/10/21(月) 19:04:58.81ID:hZfgBPYG
>>11
ごめん

13名無しなのに合格2019/10/21(月) 19:05:42.52ID:tLmE0FUP
>>10
素晴らしい
単調に変化する関数は逆関数が一意に定まるって表現がかっこいいなぁ
とか思いを馳せてたらできた問題です

14名無しなのに合格2019/10/21(月) 19:07:42.80ID:hZfgBPYG
>>13
またなんか作ってください

15名無しなのに合格2019/10/21(月) 19:22:48.47ID:kxYiA7Qj
真面目に考えて損したわ

16名無しなのに合格2019/10/21(月) 19:30:54.12ID:b/3KoNZ9
すまん、なんで短調変化だと逆関数決まるのか解説してくれん?
数弱なんや

17名無しなのに合格2019/10/21(月) 19:48:11.62ID:tLmE0FUP
>>15
えぇ…なんでそんなこと言うのよ
真面目な問題でしょ

18名無しなのに合格2019/10/21(月) 19:49:18.99ID:kxYiA7Qj
>>16
逆関数の定義見直せ

19名無しなのに合格2019/10/21(月) 19:49:55.53ID:tLmE0FUP
>>16
うーん
y=f(x)のグラフが直線y=k(k:実数)とx>0の範囲でただ一つ交点を持てばよい
みたいな感じ

20名無しなのに合格2019/10/21(月) 20:33:19.73ID:fagMj7Ir
>>16
y=ax^2+bx+cのyに実数代入して解の公式で解くと定義域内にxが2つ出てくるときがあるやろ
逆関数は上の式で言うyに代入してxを返すものなんや
だからあるyを設定してxの定義域内にひとつだけ解がでれば逆関数が一意に定まることになるんや
あるyを設定したら2解が出るのはグラフが折り返してるからであって、定義域内で折り返しがないabcの範囲を求めればええんやで
単調に増減するなら折り返しはなくなるやろ

21名無しなのに合格2019/10/21(月) 20:34:54.63ID:rV7oEli7
問題作ってみたとかこれ解ける?系のスレって、誰かが問題の答え出した瞬間に作問者や解けないやつを煽る輩が出るからな
勿論本当に解ける実力があるやつもいるが、大抵は解けないアホ

22名無しなのに合格2019/10/21(月) 21:02:16.51ID:zGjonFdz
>>1
>逆関数が一意に定まる

この表現おかしいだろ

23名無しなのに合格2019/10/21(月) 21:05:36.42ID:tLmE0FUP
>>22
そうかな?
ごめんどこがおかしいのか教えてくれないか?

24名無しなのに合格2019/10/21(月) 21:13:24.55ID:zGjonFdz
>>23
一意に定まらない逆関数はない
一意に定まる時に逆関数は存在する
一意に定まらないならば逆関数は存在せずに多価関数となる

25名無しなのに合格2019/10/21(月) 21:15:58.19ID:tLmE0FUP
>>24
あーなるほど…
じゃあ
「逆関数が存在する条件を求めよ」
になるのか
ご指摘ありがとう

26名無しなのに合格2019/10/21(月) 21:17:19.29ID:tLmE0FUP
一意に定まるって言いたくて仕方なかったんだよね
ごめんね

27名無しなのに合格2019/10/21(月) 21:17:47.55ID:zGjonFdz
>>25
その方がいいよ

28名無しなのに合格2019/10/21(月) 21:19:51.00ID:zGjonFdz
>>26
その気持ち分かるw
俺もiffとか言いたくなる

29名無しなのに合格2019/10/23(水) 17:31:03.93ID:PzLx6WLc
>>19

■ このスレッドは過去ログ倉庫に格納されています